Study on displacement prediction of landslide based on neural network

نویسندگان

  • Jian Huang
  • Zhihuan Liu
چکیده

In recent years, the economic losses caused by landslides were as high as several billion dollars. Therefore, the study of landslide risk has become a hot topic today. Landslide displacement prediction is a highly nonlinear and extremely complex issue. In most cases, it is difficult to use mathematical models to describe the process clearly. Data mining technology, which uncovers the hidden data patterns and models effectively, can be used for landslide displacement prediction. Series of system models are trained, validated, and applied to a landslide study along the Three Gorges and cases from the literature. Based on these monitoring data from deformation displacement of the Bazimen landslide in Zigui County, natural rainfall in the area of Shazhen and Guizhou, water level changes of the Three Gorges Dam, we propose a theoretical method suitable for analyzing the impact of landslide deformation. By drawing duration curve about each monitoring point displacement and predisposing factors on the valid data, we use regression analysis method to analyze correlation and hysteresis of landslide displacement variation and predisposing factors through the actual situation of monitoring monthly reports.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landslide Displacement Prediction of WA-SVM Coupling Model Based on Chaotic Sequence

Confronted with the chaotic characteristics of landslide displacement and the deficiencies of traditional time series prediction model, the wavelet analysis -support vector machine model (WA-SVM) based on chaotic time series for landslide displacement prediction is proposed. On the basis of the analysis of chaotic characteristics, landslide displacement is decomposed in to components with diffe...

متن کامل

Displacement prediction of Liangshuijing landslide based on time series additive model

The evolution of landslide displacement is affected by many factors. This paper studied the displacement monitoring data of Liangshuijing Landslide with Factor Analysis Method and found that the dominant factors influencing landslide displacement were in decreasing sequence: cumulative rainfall of anterior two months> rainfall of current month> the average reservoir level of current month>reser...

متن کامل

Comparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed

1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...

متن کامل

Application of Artificial Neural Network in Study Phenomenon of Landslide and Risk Modeling using Geographic Information System (GIS), Case Study: Alamoot Rood Watershed

     One of the natural disasters that occurs in abundance in Iran, due to the geological structure, morphological and seismic conditions, and damages the lives and property of people is a landslide. Roodbar Alamoot watershed in the east of Qazvin province is a mountainous region with a high potential for occurrence of landslides. Because of their active status, there is also a growing trend of...

متن کامل

An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange

Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks.  The present study proposes fuzzy neural networks to predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014